Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tornadoes in Chile seem to develop in what are called “high-shear, low-CAPE” (HSLC) environments. An analysis of convective parameters from the ERA5 reanalysis during 16 notable tornadoes in Chile showed that several increased markedly before the time of the reports. The significant tornado parameter (STP) was able to discriminate the timing and location of the tornadoes, even though it was not created with that goal. We established thresholds for the severe hazards in environments with reduced buoyancy (SHERBE) parameter (≥1) and the STP (≤−0.3) to further identify days favorable for tornado activity in Chile. The SHERBE and STP parameters were then used to conduct a climatological analysis from 1959 to 2021 of the seasonal, interannual, and latitudinal variations of the environments that might favor tornadoes. Both parameters were found to have a strong annual cycle. The largest magnitudes of STP were found to be generally confined to south-central Chile, in agreement with the (sparse) tornado record. The probability of a day with both SHERBE and STP values beyond their thresholds was greatest between May and August, which aligns with the months with the most tornado reports. The number of days with both SHERBE and STP beyond their respective thresholds was found to fluctuate interannually. This result warrants further study given the known interannual variability of synoptic and mesoscale weather in Chile. The results of this study extend our understanding of tornado environments in Chile and provide insight into their spatiotemporal variability.more » « less
-
In 2021, people of Hispanic and Latinx origin made up 6% of the atmospheric and Earth sciences workforce of the United States, yet they represent 20% of the population. Motivated by this disparity in Hispanic and Latinx representation in the atmospheric and Earth science workforce, this manuscript documents the lack of representation through existing limited demographic data. The analysis presents a clear gap in participation by Hispanic and Latinx people in academic settings, with a widening gap through each education and career stage. Several factors and challenges impacting the representation disparity include the lack of funding for and collaboration with Hispanic-serving institutions, limited opportunities due to immigration status, and limited support for international research collaborations. We highlight the need for actionable steps to address the lack of representation and provide targeted recommendations to federal funding agencies, educational institutions, faculty, and potential employers. While we wait for systemic cultural change from our scientific institutions, grassroots initiatives like those proudly led by the AMS Committee for Hispanic and Latinx Advancement will emerge to address the needs of the Hispanic and Latinx scientific and broader community. We briefly highlight some of those achievements. Lasting cultural change can only happen if our leaders areactiveallies in the creation of a more diverse, equitable, and inclusive future. Alongside our active allies we will continue to champion for change in our weather, water, and climate enterprise.more » « less
-
Abstract The Madden–Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the tropics and has a documented influence on extratropical extreme weather through modulation of synoptic atmospheric conditions. MJO phase has been correlated with anomalous tornado and severe hail frequency in the United States (US). However, the robustness of this relationship is unsettled, and the variability of physical pathways to modulation is poorly understood, despite the socioeconomic impacts that tornadoes and hail evoke. We approached this problem using pentad MJO indices and practically perfect severe weather hindcasts. MJO lifecycles were cataloged and clustered to document variability and potential pathways to enhanced subseasonal tornado and hail predictability. Statistically significant increases in US tornado and hail probabilities were documented 3–4 weeks following the period of the strongest upper-level divergence for the 53 active MJO events that propagated past the Maritime continent, contrasting with the 47 MJO events that experienced the barrier effect, during boreal spring 1979–2019. The 53 MJO events that propagated past the Maritime continent revealed three prevailing MJO evolutions—each containing unique pathways and modulation of US tornado and hail frequency—advancing our knowledge and capability to anticipate these hazards at extended lead times.more » « less
-
Peter L. Langen (Ed.)Arctic Amplification is a fundamental feature of past, present, and modelled future climate. However, the causes of this “amplification” within Earth’s climate system are not fully understood. To date, warming in the Arctic has been most pronounced in autumn and winter seasons, with this trend predicted to continue based on model projections of future climate. Nevertheless, the mechanisms by which this will take place are numerous, interconnected. and complex. Will future Arctic Amplification be primarily driven by local, within-Arctic processes, or will external forces play a greater role in contributing to changing climate in this region? Motivated by this uncertainty in future Arctic climate, this review seeks to evaluate several of the key atmospheric circulation processes important to the ongoing discussion of Arctic amplification, focusing primarily on processes in the troposphere. Both local and remote drivers of Arctic amplification are considered, with specific focus given to high-latitude atmospheric blocking, poleward moisture transport, and tropical-high latitude subseasonal teleconnections. Impacts of circulation variability and moisture transport on sea ice, ice sheet surface mass balance, snow cover, and other surface cryospheric variables are reviewed and discussed. The future evolution of Arctic amplification is discussed in terms of projected future trends in atmospheric blocking and moisture transport and their coupling with the cryosphere. As high-latitude atmospheric circulation is strongly influenced by lower-latitude processes, the future state of tropical-to-Arctic teleconnections is also considered.more » « less
An official website of the United States government
